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Some non-Fourier encoding methods such as wavelet and direct
encoding use spatially localized bases. The spatial localization
feature of these methods enables optimized encoding for improved
spatial and temporal resolution during dynamically adaptive MR
imaging. These spatially localized bases, however, have inherently
reduced image signal-to-noise ratio compared with Fourier or
Hadamad encoding for proton imaging. Hyperpolarized noble
gases, on the other hand, have quite different MR properties
compared to proton, primarily the nonrenewability of the signal. It
could be expected, therefore, that the characteristics of image SNR
with respect to encoding method will also be very different from
hyperpolarized noble gas MRI compared to proton MRI. In this
article, hyperpolarized noble gas image SNRs of different encod-
ing methods are compared theoretically using a matrix description
of the encoding process. It is shown that image SNR for hyperpo-
larized noble gas imaging is maximized for any orthonormal en-
coding method. Methods are then proposed for designing RF
pulses to achieve normalized encoding profiles using Fourier, Had-
amard, wavelet, and direct encoding methods for hyperpolarized
noble gases. Theoretical results are confirmed with hyperpolarized
noble gas MRI experiments.  © 2001 Academic Press
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1. INTRODUCTION

With spatially selective RF excitation, non-Fourier encodi

ing were shownZ) to be\/N/3 and\/N, respectively, relative

to the SNR of Fourier or Hadamard encoding, for an equ
number of encoding stephl. In Fourier or Hadamard encod-
ing, all spins within the field-of-view (FOV) participate in each
of the encoding steps, whereas in wavelet and direct encodi
not all of the spins contribute, resulting in a lower SNR. Thit
reduced image SNR greatly limits the applications of thes
spatially localized non-Fourier encoding bases in proton MR

The SNR situation for hyperpolarized noble gas MB) i6
quite different than for proton MRI. Because each RF excite
tion depletes some of the nonrenewable hyperpolarized me
netization, spatially localized encoding methods which us
significantly fewer excitations within a given volume element
such as wavelet and direct encoding, cause much less deple
of the hyperpolarized magnetization. As a result, larger fli
angles can be used on each RF excitation, thereby boost
image SNR. Thus, relative image SNRs for spatially localize
encoding methods with hyperpolarized noble gas imaging di
fer from those for proton imaging.

In this paper, hyperpolarized noble gas image SNRs a
analyzed theoretically using different orthogonal encodin
bases. From this analysis, different encoding basis sets
optimized to produce maximal image SNR. The experiment
results with optimized encoding bases are then compared w
theoretical predictions.

ng 2. THEORY

methods such as Hadamard, wavelet, and direct encoding can

be implemented for magnetic resonance imaging (MRI). Theﬁﬂ
non-Fourier encoding methods, especially those with spatially
localized basis functions, can be used for adaptive imagingin order to analyze image SNR and to optimize encodin
where the data acquisition strategy is modified according lb@ases, we adopt a matrix description of the encoding proce
information obtained during imagind\. With adaptively op- described elsewhere in detad, ) and summarized here in
timized encoding bases, data acquisition redundancy cantsef. For simplicity, we will consider a 1-dimensional encod
reduced, thus improving temporal and spatial resolution duringg model. The results for multidimensional magnetic resc
dynamic imaging. nance (MR) encoding techniques can be represented as se
Unfortunately, in proton MRI, the spatially localized basesble 1D operations in multiple dimensions.

that are especially useful for adaptive imaging, such as waveletet s(x) represent a 1D MR signal density to be “imaged.
and direct encoding, give a significantly reduced image sign&lefine ®(x) as a function that is centered»at= 0 and has a

to-noise ratio (SNR) compared with Fourier or Hadamarspread ofAx, which will serve as a sampling or point-spreac
encoding. For example, the SNRs of wavelet and direct encddnction of a pixel. We then define a spatially localized set c

. A Matrix Representation for MRI Encoding
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M-1

ta(X) = 2 Tor®m(), [4]

m=0

()

()

(z) whereT,, is the element of ah X M encoding matrixt, and
—/\ ®5(x) the encoding vectors are in the rowsTofFor any orthogonal

(z)

(z)

()

encoding matrixN is equal toM. In Fourier encoded MRI,
eacht,(x) is a complex exponential function arbl(x) is a

sinc-like function. In wavelet-encoding MRI, eatf{(x) is a

wavelet transform function, anfi(x) is the “scaling function”
of the wavelet basis2( 7).

_/\,- O (x) The measured signal respongdrom thenth encoding step

will be
FIG. 1. A schematic diagram of a set of localized Battle—LeMarie-shape
orthonormal functions.

M-1
Fo=((X), tn(X)) = (5(X), 2 TpuPum(X))
orthonormal basis functions,d{,(x)}, that span the FOV m=o
along the spatial encoding direction such that M-1 M-1
= E Tnm<s(x)! q)m(x» = E ThmSms [5]
O (x) =d(x—mAx) m=0,1,... M—1, e me
Ax = FOVIM, [1] or
whereM is the number of pixels along the FOV. A schematic r=Ts, [6]
diagram of a set of spatially localized orthonormal functions is
shown in Fig. 1, where the point-spread functidr(,x), is the Where
Battle—LeMarie scaling function described i6).(
Since ® ,(x) is the point-spread function of the imaging F=[rory...ry’
process and the sedY,(x)} is orthogonal,s(x) can be rep
resented by the expansion and
- T
S(X) = 2 5, (X), [2] 5=l - syl
; Therefore, a discrete 1D image estimatean be reconstructed
by
where
5=T . [7]
_ Hx)P _ ® _ Here, we assume thft is not singular, i.e._jzr’l exists. The
Sm J 00 Pr(x)dx = (S(x), Prl(x)) 3] rows of the encoding matriX for Fourier, wavelet, or

Hadamard encoding can be obtained by the complex Fo
rier, wavelet, or Hadamard transform on the columns of th
The set ofM reconstructed valuess{} represents a discrete identity matrix. Thus, the encoding matrixis actually the
estimate or “image” o§(x). The approximation in Eq. [2] will same as the transform matrix operator of the Fourier, wav
be exact if {®,(x)} is a complete basis. let, or Hadamard transform. Whehis the identity matrix,
In MR imaging, the encoding functions define the spatiat represents a direct spatial encoding, and no reconstructi
distribution of the projection of spins on the transverse plame required. Two-dimensional imaging with direct spatia
(the magnitudes and the precession angles of the spins) thateneoding along one dimension represents the case of dir
manipulates during the imaging experiment using a combineacoding where individual lines of an image are obtaine
tion of gradient and RF pulses. These encoding functigiy directly on each RF excitation. The encoding representatic
can be represented in terms of linear combinations of the badéscribed above is illustrated in Fig. 2.
functions in Eq. [1] such that The point-spread function associated with a transform m.
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5(x) T Iy T $'(x) . N-1
. E'= o?Tracd(TT") 1] = o2 > 1/||t,]% [12]
Subjects f=p{ Encoding |—p| Signals |=p{ Decoding || Esm:“glt:d t

FIG. 2. Block diagram of MRI encoding representation. whereg? = E[”']iz] and - is theith element Of”?). Here,02 is

the variance of measurement noise which can be assun

. . . constant for different encoding methods.
trix is normally unique and is related to the transform. For gased on our constant signal energy assumption, ima

example, the point-spread function associated with the Four§(rs of different encoding methods thus depend solely «
transform is a sinc-like function. In this work, we use #t,|2. According to Eq. [4]

generalized digital encoding approach developed by Paetych
al. (8) to describe the encoding process. In such an approach,
the point-spread function is made independent of the encoding It)z= S T2
basis. The generation of the encoding basis (a set of encoding L nm
functions) {t,(x)} is illustrated by Fig. 3where the encoding m=0
matrix T and the set of localized orthonormal point-spread ) ) ) . .
functions®,(x) are not necessarily related to each other. As discussed earlier, encoding functions define the spat
distribution of the projection of the transverse magnetizatiol
2.2. SNR Analysis Thus, in the ideal case when the point-spread function
) ) o . box-shapedT,,, is proportional to the overall transverse mag
The MR signal measured;, is a combination of the signal netization, P, at pixel locationm immediately after the

nm s

response defined in Eq. [6] and an additive random componegipication of thenth encoding function and Eq. [13] becomes
M, representing the measurement noise vector,

M-1

[13]

M-1
F'=F+7n=T5+7. [8] It)2 =K > PL¥2 [14]
m=0
The reconstructed imag® is achieved by inverse transfor-

mation onf’, which also transforms the measurement noiseyhereK is a constant.
According to the Bloch equation8) PL can be written as

e —T-1y 4 F-1-
=T 7T+T ', P%y] _ [Pﬁ]il)me*TRmfl;m/Tl(m)

s+7', [9] + P01 — g TRe-sn/Tim) ]

where the elements & are defined in Eq. [3], and’ is the Xsinfy(m), l=n=N-1,

image noise veptor. ' ' plad = PEﬁll)mCOS 01, (M)e~ TRe-2m/Ta(m)
Image SNR is the square root of the ratio of the signal
energyE® to the noise energ§", + PO(] — @ TRo-awTm) = 1 < n=N-1,

PLY = pl9sin g (m),
SNR= |EYE". [10] - e
Ptn = PR%cos ,(m), ol

For simplicity, we assume that all reconstruction methods are . o o )
designed to produce images of the same signal level, so that¥fiiere Pnm represents the longitudinal magnetization at pixe
signal energy will be approximately the same for all encodirgcationm immediately after the application of tieh encod-

methods, and image SNR depends on the image noise enép@),function, PY is the initial longitudinal magnetization at
only. pixel locationm, TR, is the effective pulse repetition at pixel

According to Eqg. [9], the image noise energy is locationm between thenth and the§ + 1)th encoding pulses,
0,(m) is thenth RF pulse flip angle at the pixel locatiom and
_ _ T,(m) is the longitudinal relaxation time at pixel locatiom
E"=e[n'™'] = e[(T ) (T )], [11]  From Egs. [10]-[15], it is seen that image SNR depends ¢
the initial magnetization, longitudinal relaxation times, an
wheree[ x] represents the expectationxflt has been shown how the magnetization is used with respect to choice of e
(2) that, for all orthogonal encoding bases, the image noiseding pulse orders, RF pulse flip angles, and pulse repetiti
energy can be represented as times. All of the above factors are necessary to compare ima
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T verse magnetization is usually significantly less than the tran
Ll 1 ~ o) Verse magnetization with full Ior_lgiFudinaI m_agnetiza_tior
11 1 1 -1 -1 -1 4 __".__ | e recovery and, based on the analysis in Scenario I, the ima
11 -1 -1 0 0 0 0 #,(=)  SNR improvement using Fourier encoding will not héN
T S &(x) times higher than for direct encoding. For example, d, af
00 L -1 0 0 0 0 {Ei; 800 ms and a pixel resolution of 128, the SNR improvemel
8 8 8 g (1] *Ol ? 0 - "\__ | a4 Using Fourier encoding over direct encoding is 2.8, 4.0, 5.

(x)

7.7,9.9, 11.2, and 11.3 for TRs of 100, 200, 400, 800, 160
4000, and 8000 ms, respectively. At the extreme case, when
> T, (Scenario 1), e.g., TR= 8000 ms and the Ernst angle is
/2, the SNR improvement of Fourier encoding over direc
encoding is maximized at/128 = 11.3.

Scenario lll: No longitudinal magnetization recovery.
When there is no longitudinal recovery, the transverse magr
tization depends on the value of the initial magnetization ar
how this initial magnetization is used on each excitation.

FIG. 3. Schematic description of the generation of encoding functions. There_are two cases when magnetization recover){ ne_ed |
The set of encoding functions {x)} is represented by the linear co;nb_inationbe considered. When TR T,, the thermal magnetization
of the set of point-spread functions according to the encoding matrix relaxation rate is too slow to be able to recover any significa
longitudinal magnetization between each TR. Another ca:

SNRs of different encoding methods and it is not possible W1en longitudinal recovery can be ignored is for hyperpolal
derive a single equation that satisfies all conditions. To illu&ed noble gas imaging. Since the hyperpolarized magnetiz
trate this issue, as an example, we will compare image SNR4I8f (which never recovers) is up to five orders of magnitud

Fourier and direct encoding? = identity matrix) for three Pelzgcz\e;;r;higct:veerrmag?Igr?lailtrlljzdeir?alm rigniziezl th)ign(vivshlghm?sg
separate scenarios. , Yy g g

factor contributing signal in hyperpolarized noble gas image

Scenario I: Full longitudinal thermal magnetization recov- When there is no recovery of the magnetization, the tran
ery. When TR > T,, longitudinal magnetization is fully verse magnetization is '

recovered between each TR. In such a case, a flip angt&of

can be used for both Fourier and direct encoding to maximize
signal level. Given the same initial magnetization, the trans-  Phn’ = PlalyaSin 0,(m), 1=n=N-1,
verse magnetization level at each pixel after each RF pulse
application will be the same using Fourier and direct encoding.

PlAd=p{d,cos0, (M), 1=n=N-1,

To achieve an image resolution df, N excitations are re- PLY = plo9sin g, (m),

quired for both Fourier and direct encoding. While each pixel - (00

. . . . . 4 p—

is excitedN times for Fourier encoding, however, only one Pom = P 'cosf(m). [16]

excitation is applied to each pixel in direct encoding. Accord-
ing to Egs. [12] and [14], the noise energy of Fourier encodinghus,
is N times lower than that of direct encoding. Based on the
equal signal energy assumption and Eg. [10], the SNR of

. . . . . . N—-1 N-1 M-1 M—-1 N-1
Fourier encoding isV'N times higher than _that of d|re_ct en- Stlr= S S pviz= 3OS plui
coding, as demonstrated by Panyd). (This SNR gain of n nm nm

. . . n=0 n=0 m=0 m=0 n=0
Fourier encoding results because there is full recovery of the
longitudinal magnetization between excitations. M-1

Scenario Il: Steady state.When TR is comparable ®,, = > [Pl925in2g,(m)
the longitudinal magnetization does not fully recover between m=0

excitations resulting in a lower transverse magnetization than if

[00]2, in2 .
longitudinal magnetization is fully recovered. The transverse + Pncos6o(m)sin’6y(m) +

magnetizatipn level depends on the choice of RF pulse flip + PLO92cog26,(m) - - -c080y_s(M)
angle and, if the Ernst angl®)(is used, the transverse mag- _
netization is maximized. In direct encoding, since each pixel is X sin*Oy_,(m) + PR%?cos’6,(m)- - -

excited only once, the Ernst angles#2. Thus, the transverse
magnetization remains the same as for full longitudinal mag-
netization recovery. For Fourier encoding, however, the trans- [17]

X C0S20y_3(M)COS0y_o(m)sin?6,_,(m)].
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To effectively utilize the nonrenewable magnetization, orgpatial distribution of spin transverse magnetization (or encodi
would expect to use a/2 RF pulse for the last excitation. Byfunction profile) can be excited with an RF pulse that is simpl
plugging 6y-1(m) = =/ 2 into Eq. [17], we obtain designed using the Fourier transform of the encoding function

In proton imaging, since the thermal magnetization can t

N-1 M—1 recovered, the initial longitudinal magnetization can be a:
S t)2= > ploaz [18] sumed to be the same before each RF excitation (if the TR
n=0 m=0 long with respect tar;). Thus, the flip angle of the spins in
each pixel is proportional to the amplitude of the correspondir

which is a constant for a given initial magnetization. element of the encoding vector.

Equation [18] shows that when there is no recovery of the The case for hyperpolarized noble gas imaging is mo
longitudinal magnetization and when there is no longitudingPmplicated. Since the hyperpolarized magnetization is nonr
magnetization remaining after the final excitation pulse, the to¢wable, the flip angle of the spins in each pixel has to t
signal available for image encoding is equal to the total initiéhanipulated so that some longitudinal magnetization is pr
magnetization, which is the same for any encoding method. served for subsequent excitations.

Thus, for the case of imaging where there is no magnetiza-As shown in Fig. 3, for example, if the normalized encodin
tion recovery, such as in hyperpolarized noble gas imaging, tmatrix isT, RI_: excitation pulses can be directly designed base
problem of maximizing SNR can be stated such that, giver®8 the function profiles of §,(x)} for proton imaging. In
constant available magnetization (Eq. [18]), what is the restrigvPerpolarized imaging, however, one has to adjust the amr
tion on eacH|t,|| in order to minimize the image noise energyudes of the functions {(x)} to ensure a normalized spin
(Eq. [12])? As proven in the Appendix, whéih||? = ||t;||> = €Xcitation profile. We propose a scaling mattixo adjust the
SMLPLIZ/N, thenS 1/|t,]? is minimized. In other words, amplitudes of the elements hso that the RF pulses can be
when T is normalized, the noise energi", is minimized. easily designed based on the scaled functian&q}. In our
Since, by definitionE® is the same for all encoding methodsmethod,T is scaled by element-by-element multiplication with
we conclude thafor the case of imaging with no magnetizatiord. The elements on\ are determined by the number of
recovery, such as in hyperpolarized noble gas imaging, imagacitations, the TR values at each pixel location, andThe
SNR is maximized using any orthonormal encoding methodiumber of excitations and the TR values at each pixel locatic

vary for different encoding bases.

2.3. RF Pulse Design for Normalized Encoding Profiles 2.3.1. Fourier encoding. As described previously, the en-

It was shown in the previous section that, to achieve maxinmzbding functions are expanded as linear combinations of the se
image SNR for hyperpolarized noble gas imaging, an encodilagalized orthonormal basis functions (point-spread function
basis must be normalized. The encoding functions of each ba#éined in Eq. [1], where the combinations are represented by r
define the spatial distribution of the projection of magnetizatiorectors of the encoding matrix. In Fourier encoding, the encodir
on the transverse plane, which is represented by the signal magtrix is represented by the discrete Fourier transform mat
nitudes and precession angles of the spins and is achieved byoferator as shown in Eq. [19] for the case\bf= 8.

1 1 1 1 1 1 1 1
—i(ml4) —i(ml2) —i(3m/4) i i(37/4) i(m 2) i(m/4)
1 e e e e e e e
i(—ml2) —im i(m2) —i(ml2) —im i(w 2)
1 e e e 1 e e e
_ 1 e—i(3'n/4) ei(—nlz) e—i(ﬂ'/4) efiw ei(-;r/4) e—i(wlz) ei(37-r/4)
F = 1 ei1T 1 eiﬂ' l eiTr 1 ei7T [19]
i(3m/4) —i(ml 2) i(ml4) i —i(m/4) i(m 2) —i(3ml4)
1 e e e e e e e
i(m 2) i —i(ml 2) i(m2) i —i(ml2)
1 e e e 1 e e e
1 ei(—rr/4) ei(wlZ) ei(377/4) e—i7T e—i(37-rl4) e—i(a-rl2) e—i(Tr/4)

application of RF pulses and gradients. Given a linear systemin Fourier encoding, the spins along the FOV are excite
assumption (which is valid for most encoding functions where thgth the same signal amplitude, but with a phase that vari
RF pulse flip angles are small) and a constant gradient, a cerlaiearly with position. Since all of the spins are excited ol
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every excitation, normalization of the encoding function matriwavelet transform encodes the signal in both the frequency a
will not change the relative amplitude of each encoding funthe spatial domains. With this additional degree of freedor
tion, i.e., the signal amplitude should be the same from exevavelet encoding has been shown to be suitable for multires
tation to excitation. To achieve such transverse magnetizatiotion adaptive imaging strategie$)( In a true wavelet trans-

distribution of spins for hyperpolarized noble gases, the vaform, each wavelet basis is associated with a particular poir
able-flip-angle technique, developed by Zhaipal. and de- spread function. With the introduction of the digital wavele
scribed in (0), can be used to obtain the scaling matfix encoding concepig], the point-spread function is made inde-

Equation [20] shows\ (in degrees) for the case df = 8. pendent of the wavelet basis used. Thus, in this section, \
focus only on the wavelet encoding matrix in terms of encoc
(21 21 21 21 21 21 21 2 ing basis normalization and RF pulse design.
22 22 22 22 22 22 22 2 Standard wavelet encoding basisThere are many wavelet
24 24 24 24 24 24 24 2 encoding matrices7j. One_well-known wavelet basis is rep-
= 27 27 27 27 27 27 27 2 resented by the Haar math, shown in Eq. [22], for the case
A=130 30 30 30 30 30 30 3p [20 ofN=s8.
35 35 35 35 35 35 35 3
45 45 45 45 45 45 45 4 1 1 1 1 1 1 1 1]
L 90 90 90 90 90 90 90 9 1 1 1 1 -1 -1 -1 -1
1 1 -1 -1 0 O 0O O
The elements are the same along any row in the scaling _ O O 0 O 1 1 -1 -1
matrix and the elements along each column correspondtothose VWV = | 1 —1 0 0 0 0 0 0 [22]
variable flip angles calculated i1@). A 90° pulse is used on 0 0 1 -1 0 0 0 0
the last excitation to utilize all of the remaining hyperpolarized 0 0 0 0 1 -1 0
magnetization. L0 0 0O O O 0 1 -1

2.3.2. Hadamard encoding.For Hadamard encoding, the
Hadamard transform matrix operator is used to generate @zomplete wavelet multiresolution decompositidr) in-
coding functions. Equation [21] shows an eight-level Hadqydes functions that span the full FOV, as represented

amard encoding matrix Eq. [22] by the existence of some rows\Win which all
_ i} elements are nonzero. It is also possible to construct part
11 1 1 1 1 1 1 wavelet multiresolution decompositions where the FOV i
1 1 1 1 -1 -1 -1 -1 subdivided into multiple sections. For example, Eq. [23
1 1 -1 -1 1 1 -1 -1 shows a two-section wavelet encoding matii¥g,, that
= |1 1 -1 -1 -1 -1 1 1 performs separate multiresolution decompositions withi
H=11 -1 1 -1 1 -1 1 -1 [21] each of the two subsections of the FOV.

1 -1 1 -1 -1 1 -1 1
1 -1 -1 1 1 -1 -1 1

L1 -1 -1 1 -1 1 1 -1] (1 1 1 10 0 0 O
O o O o1 1 1 1
As in the case of Fourier encoding, each spin is excited by all 1 1 -1 -1 0 0 0 0
of the encoding functions. The Hadamard encoding functions — O 0O O o001 1-1 -1
differ from the Fourier encoding functions only in their phase; Wiga = 1 -1 0 00 0 0 0 [23]
thus, the scaling of the RF pulses is the same as in the Fourier 0 0 0 01 -1 0 0
encoding method. With the variable-flip-angle technique, the 0O O 1 -1 0 O 0O O
same flip angle scaling matrix that is used for normalized L0 0O O 00 O 1 -1 ]

Fourier encoding can also be used for Hadamard encoding.
2.3.3. Direct encoding. The direct encoding matrix is the subsection 0 subsection 1
identity matrix. In direct encoding, there is no explicit “encod-
ing” and therefore no reconstruction is required. Thus the
encoding functions are the same as the spatially localized ba§isie that the odd rows oflz\/(&z) define basis functions that
defined in Eq. [1]. For direct encoding, because each pixglil encode only the left half of the FOV, and the even row:
location within an individual line is excited one time only, &efine basis functions that will encode only the right half o
flip angle of 90° can be used for each excitation. the FOV.
2.3.4. Wavelet encoding.Unlike the Fourier transform, In general, the number of levels of resolutigh for the
where the signal is modulated with different frequencies, theavelet matrixV, x, is
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o

%II
=

Q = log,(M/K) + 1, [24] , [25]
whereM is number of pixels within the FOV, anid is the whereW is the wavelet encoding matrix aids the identity
number of separate subsections within the FOV, which camatrix.

only assume a value of' 2wherei is zero or a positive  For example, the normalized matrices for Egs. [22] and [2:
integer. For a complete wavelet multiresolution decomposire, respectively,

/8 1/y8 1/\8 1/8 1/8 1/y8 1/\8 1/,8
i/y8 18 1/y8 1/\8 -1/\8 -1/\8 —1/\8 —1/,8
1/2  1/2 -1/2 -1/2 0 0 0 0
B 0 0 0 0 1/2 1/2 -1/2 -1/2
1= | 12 -1/2 0 0 0 0 0 0 [26]
0 0 1/\2 -1/\2 0 0 0 0
0 0 0 0 12 -1/\2 0 0
) 0 0 0 0 0 1/\2  -1/2 ]
and
1/2  1/2 1/2 12 0 0 0 0]
0 0 0 0 1/2 12 1/2 1/2
1/2 1/2 -1/2 -1/2 0 0 0 0
_ 0 0 0 0 1/2 12 -1/2 -1/2
@2~ | 12 -12 0 0 0 0 0 0 [27]
0 0 0 0 1/\2 -1/2 0 0
0 0 1/y2 -1/2 0 0 0 0
L 0 0 0 o 0 0 1/\2 -1/y2
subsection 0 subsection 1

tion, K = 1 andQ = log,M + 1. For example, if there are Design of wavelet RF excitation pulsedn the standard
M = 128 pixels in the FOV, a complete wavelet encodingariable-flip-angle technique described ), the flip angle is
decomposes the FOV into eight separate levels of resolaried so that the amount of transverse magnetization excitec
tion. In the limiting case where the number of subsectionstise same for different encoding steps. This techniques can
equal to the number of pixeld = K), there is only one directly used for Fourier or Hadamard encoding because all sp
level of resolution. For this cas@/y, is the identity matrix within the FOV are equally excited on each encoding step.
that represents direct or line scan encoding. With suchCalculating the appropriate flip angle for wavelet encodin
representation, multisection wavelet and direct encoding arsing the variable-flip-angle technique is complicated because
integrated as one class of encoding scheme, which will easgnal amplitude is no longer constant for each excitation, ar
the SNR analysis discussed below. volume elements experience variable delay between excitatio
The problem is illustrated by Fig. 4, which shows the Hac
Wavelet encoding basis normalizationln both Eq. [22] encoding functions arranged vertically according to the tempo
and Eqg. [23], the encoding bases are not normalized. Toeler of excitations. First, the amplitude of the encoding functic
encoding functions represented by such matrices would ipereases while fewer and fewer pixels are excited in each ex
used for proton imaging to maximize SNR. As was analyzadtion. In addition, at pixel locatiok,, spins are excited at time 0,
previously, however, they are not appropriate for hyperpd; 2T, and 4. Although spins at locations, are excited at the
larized noble gas imaging because they do not maximizame times as, the temporal pattern of excitation varies at othe
SNR in hyperpolarized noble gas MRI. To normalize thkcations. When considering, decay, to create the spin profile
wavelet encoding functions, the amplitude of each encodisgown in Fig. 4, the flip angles of different pixels in each sectio
function must be scaled by a factor that depends on thave to be calculated separately.
number of pixels excited by the function, so that In wavelet encoding, each pixel is excit@®dimes, which is the
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To fulfill the normalization requirement, the transverse magneti- 0 q=0Q

same as the total number of resolution levels defined in Eq. [24]. B { V/E Qo szezml,;é Ol 1=g=Q — 1
zation after thegth excitation at each pixel location should be

[31]

1/ N/K g=1
S = {1/ /N/(K 2973 q=2,3, Q" [28]  Therefore, the flip angle of theth RF excitation at pixel

locationx,, for a normalized Haar wavelet encoding basis witl

We also define-, as the time between thgh and ¢ + 1) Q 1€Vels of resolution is

excitation at the pixel locatiow,,,

=
0,m = arctan — 32
(292 + [Tm mod N/K)/ 2990 a ’(zqm [32]
= X K * TR 2 = = - 1 -1
Tqm K-TR ?:] _ ? J _ arctar(Sq/ V/EJ_Q:qHSz 2[5 miCm) T wy 1=q= Q-1
w2 g=Q '
[29] 33

where 0= m = M — 1, TR is the repetition time of the _ _
sequence, anda‘mod b” represents & modulob.” whereS, and 7, are as defined in Egs. [28] and [29]. In the

To directly calculate the flip angle of the spins in each pixdmiting case of direct encoding wher@ = 1, because each
let us first calculate the residual longitudinal signal amplitud@ixel is excited only one time, ever§is set tom/2.

Z. at pixel locationx,,, immediately after theith RF pulse, ~ When theT, relaxation time is ignored, Eq. [33] can be
simplified to

(z e TiwMmbmy2 — g2 ] < gq=Q, [30]
V{4 (@g-pm !

a a arctar{Sy/ (X241 S) 1=9=Q-—
O = -0 . [34]

wherex,, = mMAx (0 = m= M — 1), Axis the pixel widthM is 2

the total number of pixels along the FOV, afidand,, are as

defined in Egs. [28] and [29]. To effectively utilize all of the hyper- For example, whefi, is ignored, the scaling matriceésfor
polarized magnetization, no residual longitudinal signal should be lgfe normalized complete and two-section wavelet encodir
after the last RF pulse, i.&q, = 0. Thus, according to Eq. [30], matrices described by Eqgs. [26] and [27] are, respectively,

5 59 59 59 59 59 59 5
63 63 63 63 -63 -63 -63 —63
71 71 -71 71 0 0 0 0
— 0 0 0 o 71 71 -71 -71
Aen=1 127 —127 o0 0o 0 0 0 0 [35]
0 0 127 -127 0 0o o 0
0 0 0 0 127 -127 0 0
L0 0 0 o o0 0 127 —127]
and
60 60 60 60 O 0o 0 J
0 0 0 0O 60 60 60 60
71 71 -71 -71 0 0 0 0
— 0 o o0 o 71 71 -71 -71
Aea=| 127 —127 o0 0 0 0 0 ol - [36]
0 o o0 0 127 -127 0 0
0 0 127 -127 0 0 0 0
L0 0 0 0 o 0 127 127,

“ RN

subsection 0 subsection 1
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! RF pulses were generated with Matlab, converted to Sig!
: format, and transferred to the scanner.

; For all imaging sequences, a TR of 50 ms and a TE of 25 n
i were used. The dwell time of the RF encoding pulses was :
t

|

|

|

!

a1 I_'_'—\-—-l—-»—l i
! | _ ! ‘ us, with 512 points defining each pulse shape, giving a tot
’:—\—!—r—" pulse duration of 15 ms. The image resolution was 128 (phas

by 256 (frequency) for all images.
In order to compare the hyperpolarization levels of nobl

5T 4l_'_\_, : i [ gases for each image, a navigator excitation with a 1° flip ang
ll_\_‘_/_J__l_ was inserted at the beginning of the imaging sequences. W

! . ! a 1° pulse, only 0.015% of the signal is depleted by th

| navigator echo; thus, there was no noticeable SNR decrease
% B % %, the images.

L 1 2

FIG. 4. lllustration of various encoding amplitudes and repetition times oé 2

spins in different volume elements using wavelet encoding matrix. Image Acquisition and Data Processing

Proton images were acquired with the constant flip ang
(CFA) technique for Fourier, Hadamard, wavelet, and dire

3. METHODS encoding. A small flip angle of 7° was used for all CFA
. imaging in order to keep the peak RF amplitude within accep
3.1. Imaging System and Sequences able limits of the MR scanner for all Hadamard and wavele

imol q lized ) q q Iexcitations while still permitting SNR comparisons across a
We implemented normalized Fourier, Hadamard, wavelgheogs, Wavelet encoded images with the CFA technig

gnd direct encoding rr?ethods and Eonducte(::] adserie”s ,Of EXRfire acquired at all possible levels of multiresolution decon
iments to compare the SNRs of these methods. All imaging,qition “including the limiting case of direct encoding. The

was perform_ed on a 1.5—T.Signa imaging System (Genefafative SNRs of the proton images were then compared f
Electric Medical Systems, Milwaukee, WI) with standard grg;qification of the theoretical prediction)(

dients. A doped water phantom imaged with a standard qUadraHyperpolarized129Xe images were acquired with the vari

ture head coil was used for proton experiments for SNR Corl’ﬂble-flip-angle technique for normalized Fourier, Hadamar

ggrisons. Image.s.of a;]glass lcelll (7.5 cm long ;”9' 2dcm Whvelet, and direct encoding. Wavelet encoded images wi
lameter) containing hyperpolarizédXe were obtained at ¢ variable-flip-angle technique were acquired at all levels

L7.7 MHz With a s_olenoid coil. Op.tical pumping 6fXe gas multiresolution decomposition, including the limiting case o
was as described (). Computation of RF waveforms andjjrect encoding. Images were reconstructed with the inver
image reconstruction was implemented with Matlab (Thi‘?ormalized encoding bases.
Mathworks, Ing., Natick, MA) on a s.epar.ate SUN Sparc work- Image SNR was defined as the ratio of mean of the sign
station (Sun Microsystems, Mountain View, CA). _magnitude over the standard deviation of the noise. The me
A standard gradient echo sequence was used for normalizgd o) yajue was measured in regions where there was a str
Founer imaging. The variable-flip-angle techmque descnp nal, while the noise value was measured in regions of r
in (10) was applied to scale the RF pulses to excite normahzg nal. After being scaled by the amplitude of the navigatc
encoding profiles. In the Hadamard, wavelet, and direct enc gnal, the SNRs obtained using all encoding methods we
ing techniques, different spatial-selective RF pulses were u malized with respect to the SNRs obtained using Fouri

to excite thﬁ ndqn—Fou_rler encfodlng functlonsdal(;)ng yhd"l encoding and compared with theoretical predictions.
mension. Thex dimension was frequency encoded as usual. No -, comparison, we also developed a variable-flip-ang

slice selection was applied. Image resolution alongyttok-
mension was 2.4 mm and along thdimension it was 1.2 mm
for all of the encoding techniques.

The normalized encoding bases described in Section
were used for Fourier and Hadamard encoding. The norm
ized Haar wavelet basl/y , (described in Section 2.3.4)
was implemented wittM = 128 andK = 1, 2, 4, 8, 16,
32, 64, and 128. WheK = 128, theencoding matrix is
just the identi';y matrix and th_e encoding _represents a dir_eLEt_L Proton Imaging with Constant Flip Angle
transform or line scan encoding. The point-spread function
®(x) was a smoothed Haar box-shape function, the FourierThe relative SNRs of proton images (images are not show
transform of a cosine windowed three-lobe sinc functionvere compared with the theoretical results (Fig. 5a). Tr

approach, in which the standard (nonnormalized) multisectic
' wavelet encoding bases could be achieved for imaging hypt

olarized"*Xe. Image SNRs were both calculated theoreticall

id measured experimentally. The SNRs were normalized w
?é'spect to those using Fourier encoding for comparison.

4. RESULTS
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FIG. 5. Comparison of image SNRs of (a) proton, (}Xe with normalized encoding bases, and {€Xe with standard nonnormalized wavelet and
normalized direct, Hadamard, and Fourier encoding. In (a), the relative SNR of Fourier and Hadamard encoding is 1.

symbol “0” represents experimental result, while the symboépresents the case of wavelet encoding with the maximu
“+” represents theoretical predication. The image SNR ohumber of subsections) gives the worst SNR. The SNRs
tained using Fourier encoding is assumed to be 1, and othlee complete wavelet encoded image and the direct encc
encoding methods are normalized to the SNR obtained usimg image are only about 15.3 and 8.8%, respectively,
Fourier encoding. The SNR obtained using Hadamard ethvat of the Fourier or Hadamard encoded image when ima
coding is the same as that obtained using Fourier encodimgsolution along the wavelet or phase encoding direction
Since a very small flip angle of 7° was used, the theoretichP8. Note that the experimental result obtained for CF,
result was estimated with the assumption that magnetizatiproton wavelet encoding does not show the monotonic d
was fully recovered between excitation. A close matctrease in SNR with subsection number that is expected frc
between the theoretical predictions and experimental daktee theoretical calculations (see Fig. 5a), probably becau
can be seen. As shown in Fig. 5a, the wavelet and diragbe longitudinal recovery of protons spins between excite
encoding methods applied for proton imaging produce mutions was not considered in the SNR estimations. We no
lower SNR than does Fourier or Hadamard encoding. Thigat there is a consistent deviation of 5-10% between tt
larger the number of subsections in multisection waveldteoretical and experimental results in Fig. 5a. This i
encoding, the smaller the SNR. Direct encoding (whichrobably due to the error in flip angle estimation.
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4.2. Hyperpolarized®Xe Imaging with Variable Flip Angle magnetization levels also eliminates a complication for wavel
A . f th ical and . | SNRs wi ncoding that exists in proton imaging: the unelflgrweight
comparison of theoretical and experimenta s wi g across the FOV1Q). In proton imaging, uneven weighting

normalized Fo.u”egg mu_ItlsegUon wavelet,_ a”‘?' direct enc?d,,”?AQises from the variation of the longitudinal recovery due to th
for hyperpolarized™Xe imaging is shown in Fig. 5b. The “o variable TRs at different pixel locations. This problem is

symbol represents experimental results and the Sympol .increased in proton wavelet imaging when the TR is shor

) . . BBmpIicating the application of wavelet encoding for many fas
wavelet and direct encoding methods, applied for hyperpol% ging techniques. By contrast, in hyperpolarized noble g

ooy .
ized *"Xe imaging, produce SNRs that are the same as thosqrﬂ ging the situation actually improves with shorter TR. Whe

the normalized Fogrler_and Hadamard encoding, in sFark COfRR is much less tham,, the uneven weighting effect is totally
trast to the proton imaging case (Fig. 5a). The theoretical S'\élﬁminated

predictions are corroborated by the experimental results. FoérL

. le of the relative i SNRs. obtai n our experiments, no slice selection was applied. T
comparison, an example ot the refative Image S, oblaINglhieve slice selection, a 180° pulse that refocuses spins alc

with standard wavelet encoding (nonnormalized) bases’,a'sdirection orthogonal to the initial excitation can be inserte

shown in Fig. 5¢. As expected, image SNRs obtained USIMlo the non-Fourier encoding sequence. For multiple-sh

nonnormalized bases were lower than the SNRs obtained usﬁ’ﬂ%ging sequences, however, imperfect 180° RF pulses c

the normalized encoding bases. destroy some of the stored longitudinal hyperpolarized ma
netization (3), resulting in images with lower SNR. Alterna-
5. DISCUSSION tively, a 90° spatial-selective RF pulse can be used to elimine
all of the hyperpolarized magnetization outside of the slab
In this paper, we developed the theory for analyzing thaterest before the imaging sequence starts, and phase enco
image SNR of hyperpolarized noble gases, and conclude thah then be applied within the slab to obtain multiple slice:
the image SNR for hyperpolarized noble gas imaging is mawfth this method, only a small amount of extra time is neede
imized using any orthonormal encoding meth@ua the basis at the beginning of the imaging session to deplete the out-c
of this finding, we derived algorithms to directly calculate thelab hyperpolarized magnetization.
variable flip angles for RF encoding pulses so that normalizedDue to the nonlinear relationship between an RF puls
encoding bases could be achieved with the considerationesivelope and the spatial distribution of magnetization that
both T, relaxation and the depletion of hyperpolarized magnexcites, image distortion can be introduced when a simp
tization by the RF pulses. Fourier transform technique is used for RF pulse design
We integrated multisection wavelet and direct encoding intarge flip angles. Since RF excitation is only used for slic
one general scheme, with the same reconstruction matrix feelection, this is not an important issue for Fourier encoding.
mat. This method facilitates the understanding of the SN#n-Fourier encoding, however, the spatial distribution of e»
relationship among the direct and the multisection waveleited magnetization itself participates in the encoding, so th
encoding techniques. Excellent matches between the theortte nonlinearity may introduce image artifacts. When the var
cal and experimental SNRs, for both proton afide imaging, able-flip-angle technique is applied to hyperpolarized noble g
have been demonstrated. These methods can be used to apgging, in order to efficiently utilize all the hyperpolarization,
mize imaging schemes with Fourier, Hadamard, wavelet, diip angles as large as 90° pulse have to be applied. Therefo
rect, or any other orthonormal encoding basis so that high-SNRs expected that special RF pulse design technigliés-20
images can be obtained with the most efficient utilization afill be needed to achieve accurate spatial profiles and artifas
hyperpolarization. free images. In our variable-flip-angle experiments, 90° puls
In wavelet and direct encoding, the SNR varies slightly wittvere used only on the last excitation for wavelet, Hadamar
pixel location. Due to the longitudinal relaxation of nobleand Fourier encoding and on all encoding steps for dire
gases, spins that are excited at a later time have a smaller sigmmedoding. Using these encoding methods, even though the
than those that are excited earlier. In the direct encoding cagelses were designed by simple Fourier transformation, |
the last pixel is excitedM] — 1) * TR after the first spins are noticeable distortion was seen in the images. For the dire
excited (whereM is the number of pixels along the FOV).imaging technique, because all the pixels across the FOV ¢
When the TR is much smaller th@n, this effect is expected excited with the same profile, slight profile distortions will no
to be negligible. introduce noticeable artifacts. In other encoding methods, a 9
When hyperpolarized noble gases are imaged, the hyperpalse was used for only the high-resolution profiles. Owing t
larized magnetization is 2@imes larger than the longitudinalthe small signal associated with these encoding steps, it
magnetization at thermal Boltzmann equilibrium. Since thenlikely that there will be any noticeable artifact.
MR signal does not depend on the recovery of the thermalln our SNR analysis, we assumed that spins stay within ea
magnetization, long recycle delays are not needed. The absepizel boundary during the excitation. The analysis will be
of the detectablé®Xe or *He signal at thermal equilibrium affected by motion of the spins. One source of motion i



SNR ANALYSIS 325

diffusion. For example, our 3-atm Xe cell phantom has a 1. Let’s first prove the theorem for the casenof 2. When
diffusion constant oD = 0.02 cni/s (21). During the 15-ms n = 2, a, + a, = C. Thus,
RF pulse applicationt), **Xe atoms will diffusedXqy; =
(2Dtr)™ = 0.2 mm Q). Thus, when pixel size is small, 1 1 1 1 c
especially comparable to the diffusion length, the SNR analysis
and the RF generation methods may not hold. When pixel size
is large or when the duration of the RF pulse is short, however,
the effect of diffusion can be ignored for the SNR analysis.Because the coefficient af in the quadruple functios,(C —

A gas circulation systen®@) can provide a continuous flow a;) is —1, functiona,(C — a,) has a maximal value. Sin&@
of hyperpolarized noble gase23j. With the replenishing of is not negativeS, has a minimal value. When the derivative of
hyperpolarized gases, MR signal levels can be expectedSois 0, S, is minimized. Based on Eq. [37],
increase considerably. This improved MR signal can signifi-

Sz_a1+a2_al+c_a1:al(c_al).

[37]

cantly help in many hyperpolarized noble gas NMR spectros- ds, c

copy and MRI applications?2d). Image SNR calculation with — = d() /da, [38]
continuous flow is complicated because there is flow-in of da, ,(C—ay)

newly hyperpolarized gas and flow-out of depolarized gas. The C(2a, — C)

hyperpolarization level of each pixel relies on the initial mag- = a(C—a)? [39]

netization, the RF pulse flip angles applied, and the flow

velocity and direction. If the flow is fast enough, the hyperpo-

larized magnetization at each pixel in the FOV is fully replenfo solvedS,/da, = 0, we geta, = a, = C/2, whenS; is

ished with newly polarized gas between excitations. In thiginimized.

case, image SNR comparison is the same as that described i Let's then prove that if the theorem is true for the case ¢

Scenario I. Further investigations will focus on the modeling ¢f = N — 1, it is true for the case afi = N, whereN is an

flow with the consideration of flow velocity, direction, andnteger and is larger than 2. When= N anda, + a, + - -

their relationship with the utilization of hyperpolarized mag+ ay = C, we want to minimize5, = 1/a, + 1/a, + - - +

netization during imaging. 1/ay. For ANY fixed ay, to minimizeS, = Sy_; + l/ay is
In summary, imaging of a hyperpolarizé&éiXe cell using equivalent to minimizeS,_,. Since the theorem is true for

normalized Fourier, Hadamard, wavelet, and direct encodiig= N — 1, for anyay, Sy, will be minimized only ifa, =

was implemented and the relative SNRs were measured &d= "+ = ay1 = (C — ay)/(N — 1). Therefore,

compared across the various encoding methods. With the SNR

of Fourier encoding as a reference, the relative SNRs obtained 1 1 1 (N-12 1

using wavelet and direct encoding were shown to increase S\=—+——+ -+ ="+ —. [40]
a & ay (C—ay ay

dramatically from 0.153 and 0.088, respectively, in proton

imaging to 1.0 for hyperpolarized gas imaging where all or-

thonormal encoding methods have identical SNR. Even for tBémilar to the proof in [1],Sy has a minimum value. To

case of TR= T, (Scenario Il), there is still a significant SNRminimize Sy, according to Eq. [40], we should set the deriv

difference for proton imaging between Fourier encoding aradive of S, to be O,

spatially localized encoding methods such as direct encoding.

The SNR equivalence of all orthonormal encoding methods in (N—1)2 1
o

hyperpolarized noble gas imaging is of striking significance, - 4 )ldaN =0. [41]
(C—ay ay

because it opens the door for new applications of non-Fourier
encoding methods. In particular, the spatial localization feature
of some non-Fourier encoding methods make them suitable fife solution to Eq. [41] isy = C/N. Therefore, whema, =

dynamically adaptive imaging. a, =--+= ay, = ay = C/IN, S, is minimized.
3. According to [1] and [2] and based on the inductior
APPENDIX theory, for anyn with a, + a, + --- + a, = C, only if
) a, = a, = -+ = a, = C/n, the summatiors, = 1/a, +
THeorem 1. For a group of nonnegative real numbers, a 1/a, + - -+ + 1/a, is minimized and equalg®C.
a,  --,a,ifa +a + -+ a, =2C, where Cis a

constant larger or equal to zero and n is any integer number
which is larger or equal t®. S, = 1/a, + 1/a, + - - - + 1/a,

will be minimized only ifa=a, = --- = a, = C/n. ) ) ) )
. . . . This work was performed with support from the Whitaker Foundatior
Proof. We will use the induction method to prove thi§rg-94-0172, TF-97-0002, and RG-95-0192), NIH (R29-CA70314, RO1
theorem. HL57563), NSF (BES-9617342), and NASA (NAG9-1041).
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