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Some non-Fourier encoding methods such as wavelet and direct
encoding use spatially localized bases. The spatial localization
feature of these methods enables optimized encoding for improved
spatial and temporal resolution during dynamically adaptive MR
imaging. These spatially localized bases, however, have inherently
reduced image signal-to-noise ratio compared with Fourier or
Hadamad encoding for proton imaging. Hyperpolarized noble
gases, on the other hand, have quite different MR properties
compared to proton, primarily the nonrenewability of the signal. It
could be expected, therefore, that the characteristics of image SNR
with respect to encoding method will also be very different from
hyperpolarized noble gas MRI compared to proton MRI. In this
article, hyperpolarized noble gas image SNRs of different encod-
ing methods are compared theoretically using a matrix description
of the encoding process. It is shown that image SNR for hyperpo-
larized noble gas imaging is maximized for any orthonormal en-
coding method. Methods are then proposed for designing RF
pulses to achieve normalized encoding profiles using Fourier, Had-
amard, wavelet, and direct encoding methods for hyperpolarized
noble gases. Theoretical results are confirmed with hyperpolarized
noble gas MRI experiments. © 2001 Academic Press

Key Words: non-Fourier encoded MRI; signal-to-noise ratio;
hyperpolarized noble gas MRI; spatially selective RF excitation;
wavelet encoding.

1. INTRODUCTION

With spatially selective RF excitation, non-Fourier encod
methods such as Hadamard, wavelet, and direct encodin
be implemented for magnetic resonance imaging (MRI). T
non-Fourier encoding methods, especially those with spa
localized basis functions, can be used for adaptive ima
where the data acquisition strategy is modified accordin
information obtained during imaging (1). With adaptively op
timized encoding bases, data acquisition redundancy ca
reduced, thus improving temporal and spatial resolution du
dynamic imaging.

Unfortunately, in proton MRI, the spatially localized ba
that are especially useful for adaptive imaging, such as wa
and direct encoding, give a significantly reduced image sig
to-noise ratio (SNR) compared with Fourier or Hadam
encoding. For example, the SNRs of wavelet and direct en
3141090-7807/01 $35.00
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ing were shown (2) to be=N/3 and=N, respectively, relativ
to the SNR of Fourier or Hadamard encoding, for an e
number of encoding steps,N. In Fourier or Hadamard enco
ing, all spins within the field-of-view (FOV) participate in ea
of the encoding steps, whereas in wavelet and direct enco
not all of the spins contribute, resulting in a lower SNR. T
reduced image SNR greatly limits the applications of th
spatially localized non-Fourier encoding bases in proton M

The SNR situation for hyperpolarized noble gas MRI (3) is
quite different than for proton MRI. Because each RF ex
tion depletes some of the nonrenewable hyperpolarized
netization, spatially localized encoding methods which
significantly fewer excitations within a given volume elem
such as wavelet and direct encoding, cause much less dep
of the hyperpolarized magnetization. As a result, larger
angles can be used on each RF excitation, thereby boo
image SNR. Thus, relative image SNRs for spatially local
encoding methods with hyperpolarized noble gas imaging
fer from those for proton imaging.

In this paper, hyperpolarized noble gas image SNRs
analyzed theoretically using different orthogonal enco
bases. From this analysis, different encoding basis set
optimized to produce maximal image SNR. The experime
results with optimized encoding bases are then compared
theoretical predictions.

2. THEORY

2.1. A Matrix Representation for MRI Encoding

In order to analyze image SNR and to optimize enco
bases, we adopt a matrix description of the encoding pro
described elsewhere in detail (4, 5) and summarized here
brief. For simplicity, we will consider a 1-dimensional enc
ing model. The results for multidimensional magnetic re
nance (MR) encoding techniques can be represented as
rable 1D operations in multiple dimensions.

Let s( x) represent a 1D MR signal density to be “image
DefineF( x) as a function that is centered atx 5 0 and has
pread ofDx, which will serve as a sampling or point-spre

function of a pixel. We then define a spatially localized se
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orthonormal basis functions, {Fm( x)}, that span the FOV
along the spatial encoding directionx, such that

Fm~ x! 5 F~ x 2 mDx! m 5 0, 1, . . . ,M 2 1,

Dx 5 FOV/M, [1]

hereM is the number of pixels along the FOV. A schem
iagram of a set of spatially localized orthonormal function
hown in Fig. 1, where the point-spread function,F( x), is the
attle–LeMarie scaling function described in (6).
Since Fm( x) is the point-spread function of the imag

process and the set {Fm( x)} is orthogonal,s( x) can be rep-
resented by the expansion

s~ x! > O
m

smFm~ x!, [2]

here

sm 5 E s†~ x!Fm~ x!dx 5 ^s~ x!, Fm~ x!&. [3]

The set ofM reconstructed values {sm} represents a discre
estimate or “image” ofs( x). The approximation in Eq. [2] wi
be exact if {Fm( x)} is a complete basis.

In MR imaging, the encoding functions define the spa
distribution of the projection of spins on the transverse p
(the magnitudes and the precession angles of the spins) th
manipulates during the imaging experiment using a com
tion of gradient and RF pulses. These encoding functionst n( x)
can be represented in terms of linear combinations of the
functions in Eq. [1] such that

FIG. 1. A schematic diagram of a set of localized Battle–LeMarie-s
orthonormal functions.
s
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tn~ x! 5 O
m50

M21

TnmFm~ x!, [4]

hereTnm is the element of anN 3 M encoding matrixT##, and
the encoding vectors are in the rows ofT##. For any orthogona
encoding matrix,N is equal toM. In Fourier encoded MR

acht n( x) is a complex exponential function andF( x) is a
sinc-like function. In wavelet-encoding MRI, eacht n( x) is a
wavelet transform function, andF( x) is the “scaling function
of the wavelet basis (2, 7).

The measured signal responser n from thenth encoding ste
will be

r n 5 ^s~ x!, tn~ x!& 5 ^s~ x!, O
m50

M21

TnmFm~ x!&

5 O
m50

M21

Tnm^s~ x!, Fm~ x!& 5 O
m50

M21

Tnmsm, [5]

r

r# 5 T## s# , [6]

where

r# 5 @r 0 r 1 . . . r N21#
T

and

s# 5 @s0 s1 . . . sM21#
T.

Therefore, a discrete 1D image estimates# can be reconstructe
by

s# 5 T## 21r# . [7]

Here, we assume thatT## is not singular, i.e.,T## 21 exists. The
rows of the encoding matrixT## for Fourier, wavelet, o
Hadamard encoding can be obtained by the complex
rier, wavelet, or Hadamard transform on the columns o
identity matrix. Thus, the encoding matrixT## is actually the
same as the transform matrix operator of the Fourier, w
let, or Hadamard transform. WhenT## is the identity matrix
it represents a direct spatial encoding, and no reconstru
is required. Two-dimensional imaging with direct spa
encoding along one dimension represents the case of
encoding where individual lines of an image are obta
directly on each RF excitation. The encoding represent
described above is illustrated in Fig. 2.

The point-spread function associated with a transform

e
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316 ZHAO ET AL.
trix is normally unique and is related to the transform.
example, the point-spread function associated with the Fo
transform is a sinc-like function. In this work, we use
generalized digital encoding approach developed by Panyet
al. (8) to describe the encoding process. In such an appr
the point-spread function is made independent of the enc
basis. The generation of the encoding basis (a set of enc
functions) {t n( x)} is illustrated by Fig. 3,where the encodin
matrix T## and the set of localized orthonormal point-spr
functionsFm( x) are not necessarily related to each other

2.2. SNR Analysis

The MR signal measured,r#9, is a combination of the sign
response defined in Eq. [6] and an additive random compo
h# , representing the measurement noise vector,

r#9 5 r# 1 h# 5 T## s# 1 h# . [8]

The reconstructed images#9 is achieved by inverse transfo
ation onr#9, which also transforms the measurement no

s#9 5 T## 21r# 1 T## 21h# ,

5 s# 1 h# 9, [9]

here the elements ofs# are defined in Eq. [3], andh# 9 is the
mage noise vector.

Image SNR is the square root of the ratio of the si
nergyEs to the noise energyEn,

SNR5 ÎE s/En. [10]

For simplicity, we assume that all reconstruction methods
designed to produce images of the same signal level, so th
signal energy will be approximately the same for all enco
methods, and image SNR depends on the image noise e
only.

According to Eq. [9], the image noise energy is

En 5 e@h# 9 Th# 9# 5 e@~T## 21h# ! T~T## 21h# !#, [11]

heree[ x] represents the expectation ofx. It has been show
(2) that, for all orthogonal encoding bases, the image n
energy can be represented as

FIG. 2. Block diagram of MRI encoding representation.
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En 5 s 2Trace@~T## T## T! 21# 5 s 2 O
n50

N21

1/itni 2, [12]

heres 2 5 e[h i
2] and h i is the i th element ofh# . Here,s2 is

the variance of measurement noise which can be ass
constant for different encoding methods.

Based on our constant signal energy assumption, im
SNRs of different encoding methods thus depend solel
it ni 2. According to Eq. [4],

itni 2 5 O
m50

M21

Tnm
2 . [13]

As discussed earlier, encoding functions define the sp
distribution of the projection of the transverse magnetiza
Thus, in the ideal case when the point-spread functio
box-shaped,Tnm is proportional to the overall transverse m-

etization, Pnm
[ xy] , at pixel locationm immediately after th

pplication of thenth encoding function and Eq. [13] becom

itni 2 5 K O
m50

M21

Pnm
@ xy# 2, [14]

whereK is a constant.
According to the Bloch equations (9), Pnm

[ xy] can be written a

Pnm
@ xy# 5 @P ~n21!m

[z] e2TR~n21!m/T1~m!

1 Pm
@00#~1 2 e2TR~n21!m/T1~m!!#

3 sin un~m!, 1 # n # N 2 1,

Pnm
@ z# 5 P ~n21!m

@ z# cosu ~n21!~m!e2TR~n21!m/T1~m!

1 Pm
@00#~1 2 e2TR~n21!m/T1~m!!, 1 # n # N 2 1,

P0m
@ xy# 5 Pm

@00#sin u0~m!,

P0m
@ z# 5 Pm

[00]cosu0~m!, [15]

herePnm
[ z] represents the longitudinal magnetization at p

locationm immediately after the application of thenth encod
ing function,Pm

[00] is the initial longitudinal magnetization
pixel locationm, TRnm is the effective pulse repetition at pix
locationm between thenth and the (n 1 1)th encoding pulse
u n(m) is thenth RF pulse flip angle at the pixel locationm, and
T1(m) is the longitudinal relaxation time at pixel locationm.

From Eqs. [10]–[15], it is seen that image SNR depend
the initial magnetization, longitudinal relaxation times,
how the magnetization is used with respect to choice o
coding pulse orders, RF pulse flip angles, and pulse repe
times. All of the above factors are necessary to compare i
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SNRs of different encoding methods and it is not possib
derive a single equation that satisfies all conditions. To i
trate this issue, as an example, we will compare image SN

Fourier and direct encoding~T## 5 identity matrix) for three
separate scenarios.

Scenario I: Full longitudinal thermal magnetization rec
ery. When TR @ T1, longitudinal magnetization is ful
recovered between each TR. In such a case, a flip angle op/2
can be used for both Fourier and direct encoding to maxi
signal level. Given the same initial magnetization, the tr
verse magnetization level at each pixel after each RF
application will be the same using Fourier and direct encod
To achieve an image resolution ofN, N excitations are re
quired for both Fourier and direct encoding. While each p
is excitedN times for Fourier encoding, however, only o
excitation is applied to each pixel in direct encoding. Acc
ing to Eqs. [12] and [14], the noise energy of Fourier enco
is N times lower than that of direct encoding. Based on
equal signal energy assumption and Eq. [10], the SN
Fourier encoding is=N times higher than that of direct e
coding, as demonstrated by Panych (2). This SNR gain o
Fourier encoding results because there is full recovery o
longitudinal magnetization between excitations.

Scenario II: Steady state.When TR is comparable toT1,
the longitudinal magnetization does not fully recover betw
excitations resulting in a lower transverse magnetization th
longitudinal magnetization is fully recovered. The transv
magnetization level depends on the choice of RF pulse
angle and, if the Ernst angle (9) is used, the transverse ma
netization is maximized. In direct encoding, since each pix
excited only once, the Ernst angle isp/2. Thus, the transver
magnetization remains the same as for full longitudinal m
netization recovery. For Fourier encoding, however, the tr

FIG. 3. Schematic description of the generation of encoding funct
The set of encoding functions {t n( x)} is represented by the linear combinat
of the set of point-spread functions according to the encoding matrixT##.
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verse magnetization is usually significantly less than the t
verse magnetization with full longitudinal magnetizat
recovery and, based on the analysis in Scenario I, the i
SNR improvement using Fourier encoding will not be=N
times higher than for direct encoding. For example, for aT1 of
800 ms and a pixel resolution of 128, the SNR improvem
using Fourier encoding over direct encoding is 2.8, 4.0,
7.7, 9.9, 11.2, and 11.3 for TRs of 100, 200, 400, 800, 1
4000, and 8000 ms, respectively. At the extreme case, whe
@ T1 (Scenario I), e.g., TR5 8000 ms and the Ernst angle
p/2, the SNR improvement of Fourier encoding over di
encoding is maximized at=128 5 11.3.

Scenario III: No longitudinal magnetization recove
When there is no longitudinal recovery, the transverse ma
tization depends on the value of the initial magnetization
how this initial magnetization is used on each excitation.

There are two cases when magnetization recovery nee
be considered. When TR! T1, the thermal magnetizatio
relaxation rate is too slow to be able to recover any signifi
longitudinal magnetization between each TR. Another
when longitudinal recovery can be ignored is for hyperpo
ized noble gas imaging. Since the hyperpolarized magne
tion (which never recovers) is up to five orders of magni
higher than thermally polarized magnetization (which d
recover), recovery of longitudinal magnetization is a m
factor contributing signal in hyperpolarized noble gas ima

When there is no recovery of the magnetization, the tr
verse magnetization is

Pnm
@ xy# 5 P ~n21!m

@ z# sin un~m!, 1 # n # N 2 1,

Pnm
@ z# 5 P ~n21!m

@ z# cosu ~n21!~m!, 1 # n # N 2 1,

P0m
@ xy# 5 Pm

@00#sin u0~m!,

P0m
@ z# 5 Pm

@00#cosu0~m!. [16]

hus,

O
n50

N21

itni 2 5 O
n50

N21 O
m50

M21

Pnm
@ xy# 2 5 O

m50

M21 O
n50

N21

Pnm
@ xy# 2

5 O
m50

M21

@Pm
@00# 2sin2u0~m!

1 Pm
@00# 2cos2u0~m!sin2u1~m! 1 · · ·

1 Pm
@00# 2cos2u0~m!· · ·cos2uN23~m!

3 sin2uN22~m! 1 Pm
@00# 2cos2u0~m!· · ·

3 cos2uN23~m!cos2uN22~m!sin2uN21~m!#.

[17]

.
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318 ZHAO ET AL.
To effectively utilize the nonrenewable magnetization,
would expect to use ap/2 RF pulse for the last excitation. B

lugginguN21(m) 5 p/ 2 into Eq. [17], we obtain

O
n50

N21

itni 2 5 O
m50

M21

Pm
@00# 2, [18]

which is a constant for a given initial magnetization.
Equation [18] shows that when there is no recovery of

longitudinal magnetization and when there is no longitud
magnetization remaining after the final excitation pulse, the
signal available for image encoding is equal to the total in
magnetization, which is the same for any encoding method

Thus, for the case of imaging where there is no magne
tion recovery, such as in hyperpolarized noble gas imaging
problem of maximizing SNR can be stated such that, giv
constant available magnetization (Eq. [18]), what is the res
tion on eachit ni in order to minimize the image noise ene
(Eq. [12])? As proven in the Appendix, whenit ii 2 5 it ji 2 5
¥m50

M21 Pm
[00] 2/N, then¥ 1/it ni 2 is minimized. In other word

when T## is normalized, the noise energy,En, is minimized
Since, by definition,Es is the same for all encoding metho
we conclude thatfor the case of imaging with no magnetizat
recovery, such as in hyperpolarized noble gas imaging, im
SNR is maximized using any orthonormal encoding meth

2.3. RF Pulse Design for Normalized Encoding Profiles

It was shown in the previous section that, to achieve max
image SNR for hyperpolarized noble gas imaging, an enco
basis must be normalized. The encoding functions of each
define the spatial distribution of the projection of magnetiza
on the transverse plane, which is represented by the signa
nitudes and precession angles of the spins and is achieved

application of RF pulses and gradients. Given a linear sy
assumption (which is valid for most encoding functions wher
RF pulse flip angles are small) and a constant gradient, a c

F## 5 3
1 1 1 1
1 e2i ~p/4! e2i ~p/ 2! e2i ~3p

1 ei ~2p/ 2! e2ip ei ~p/

1 e2i ~3p/4! ei ~p/ 2! e2i ~p

1 eip 1 eip

1 ei ~3p/4! e2i ~p/ 2! ei ~p/

1 ei ~p/ 2! eip e2i ~p

1 ei ~p/4! ei ~p/ 2! ei ~3p
e

e
l

al
l

a-
he
a

c-

,

e
.

al
ng
sis
n
ag-
the

m
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spatial distribution of spin transverse magnetization (or enco
function profile) can be excited with an RF pulse that is sim
designed using the Fourier transform of the encoding funct

In proton imaging, since the thermal magnetization ca
recovered, the initial longitudinal magnetization can be
sumed to be the same before each RF excitation (if the T
long with respect toT1). Thus, the flip angle of the spins
each pixel is proportional to the amplitude of the correspon
element of the encoding vector.

The case for hyperpolarized noble gas imaging is m
complicated. Since the hyperpolarized magnetization is n
newable, the flip angle of the spins in each pixel has t
manipulated so that some longitudinal magnetization is
served for subsequent excitations.

As shown in Fig. 3, for example, if the normalized encod
matrix isT##, RF excitation pulses can be directly designed b
on the function profiles of {t n( x)} for proton imaging. In
hyperpolarized imaging, however, one has to adjust the a
tudes of the functions {t n( x)} to ensure a normalized sp
excitation profile. We propose a scaling matrixL## to adjust the
amplitudes of the elements inT## so that the RF pulses can
easily designed based on the scaled functions {t n( x)}. In our
method,T## is scaled by element-by-element multiplication w
##. The elements onL## are determined by the number
excitations, the TR values at each pixel location, andT1. The
number of excitations and the TR values at each pixel loc
vary for different encoding bases.

2.3.1. Fourier encoding. As described previously, the e
coding functions are expanded as linear combinations of the
localized orthonormal basis functions (point-spread funct
defined in Eq. [1], where the combinations are represented b
vectors of the encoding matrix. In Fourier encoding, the enco
matrix is represented by the discrete Fourier transform m
operator as shown in Eq. [19] for the case ofN 5 8.

In Fourier encoding, the spins along the FOV are exc
with the same signal amplitude, but with a phase that v
linearly with position. Since all of the spins are excited

1 1 1 1
eip ei ~3p/4! ei ~p/ 2! ei ~p/4!

1 e2i ~p/ 2! e2ip ei ~p/ 2!

e2ip ei ~p/4! e2i ~p/ 2! ei ~3p/4!

1 eip 1 eip

eip e2i ~p/4! ei ~p/ 2! e2i ~3p/4!

1 ei ~p/ 2! eip e2i ~p/ 2!

e2ip e2i ~3p/4! e2i ~p/ 2! e2i ~p/4!

4 [19]
/4!

2!

/4!

4!

/ 2!

/4!
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every excitation, normalization of the encoding function ma
will not change the relative amplitude of each encoding f
tion, i.e., the signal amplitude should be the same from
tation to excitation. To achieve such transverse magnetiz
distribution of spins for hyperpolarized noble gases, the
able-flip-angle technique, developed by Zhaoet al. and de
cribed in (10), can be used to obtain the scaling matrixL##.

Equation [20] showsL## (in degrees) for the case ofN 5 8.

L## 5 3
21 21 21 21 21 21 21 21
22 22 22 22 22 22 22 22
24 24 24 24 24 24 24 24
27 27 27 27 27 27 27 27
30 30 30 30 30 30 30 30
35 35 35 35 35 35 35 35
45 45 45 45 45 45 45 45
90 90 90 90 90 90 90 90

4 [20]

The elements are the same along any row in the sc
matrix and the elements along each column correspond to
variable flip angles calculated in (10). A 90° pulse is used o
he last excitation to utilize all of the remaining hyperpolari
agnetization.

2.3.2. Hadamard encoding.For Hadamard encoding, t
adamard transform matrix operator is used to generat
oding functions. Equation [21] shows an eight-level H
mard encoding matrix

H## 5 3
1 1 1 1 1 1 1 1
1 1 1 1 21 21 21 21
1 1 21 21 1 1 21 21
1 1 21 21 21 21 1 1
1 21 1 21 1 21 1 21
1 21 1 21 21 1 21 1
1 21 21 1 1 21 21 1
1 21 21 1 21 1 1 21

4 [21]

As in the case of Fourier encoding, each spin is excited b
of the encoding functions. The Hadamard encoding func
differ from the Fourier encoding functions only in their pha
thus, the scaling of the RF pulses is the same as in the F
encoding method. With the variable-flip-angle technique
same flip angle scaling matrixL## that is used for normalize
Fourier encoding can also be used for Hadamard encodi

2.3.3. Direct encoding. The direct encoding matrix is th
identity matrix. In direct encoding, there is no explicit “enc
ing” and therefore no reconstruction is required. Thus
encoding functions are the same as the spatially localized
defined in Eq. [1]. For direct encoding, because each
location within an individual line is excited one time only
flip angle of 90° can be used for each excitation.

2.3.4. Wavelet encoding.Unlike the Fourier transform
where the signal is modulated with different frequencies
x
-
i-
on
i-

ng
se

d

n-
-

ll
s
;
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e

.

-
e
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el

e

wavelet transform encodes the signal in both the frequenc
the spatial domains. With this additional degree of freed
wavelet encoding has been shown to be suitable for multi
lution adaptive imaging strategies (1). In a true wavelet tran
form, each wavelet basis is associated with a particular p
spread function. With the introduction of the digital wave
encoding concept (8), the point-spread function is made in
pendent of the wavelet basis used. Thus, in this section
focus only on the wavelet encoding matrix in terms of en
ing basis normalization and RF pulse design.

Standard wavelet encoding basis.There are many wavel
encoding matrices (7). One well-known wavelet basis is re
resented by the Haar matrixW##, shown in Eq. [22], for the cas
of N 5 8.

W## 5 3
1 1 1 1 1 1 1 1
1 1 1 1 21 21 21 21
1 1 21 21 0 0 0 0
0 0 0 0 1 1 21 21
1 21 0 0 0 0 0 0
0 0 1 21 0 0 0 0
0 0 0 0 1 21 0 0
0 0 0 0 0 0 1 21

4 [22]

A complete wavelet multiresolution decomposition (11) in-
ludes functions that span the full FOV, as represente
q. [22] by the existence of some rows inW## in which all

elements are nonzero. It is also possible to construct p
wavelet multiresolution decompositions where the FO
subdivided into multiple sections. For example, Eq. [
shows a two-section wavelet encoding matrix,W##(8,2), that
performs separate multiresolution decompositions w
each of the two subsections of the FOV.

Note that the odd rows ofW##(8,2) define basis functions th
will encode only the left half of the FOV, and the even ro
define basis functions that will encode only the right ha
the FOV.

In general, the number of levels of resolutionQ for the
wavelet matrixW## is

W## ~8,2! 5 3
1 1 1 1 0 0 0 0
0 0 0 0 1 1 1 1
1 1 21 21 0 0 0 0
0 0 0 0 1 1 21 21
1 21 0 0 0 0 0 0
0 0 0 0 1 21 0 0
0 0 1 21 0 0 0 0
0 0 0 0 0 0 1 21

4 [23]

subsection 0 subsection 1
(M,K)



w
n ca
o e

os

re
in

so
ns
e

l
uc

g a
ea

]
T

ld
ze
rpo
miz
th
din

th

[23]

d

v ited is
t n be
d spins
w

ding
u se the
s and
v tions.
T aar
e poral
o tion
i exci-
t 0,

e
ther
file
tion

e

320 ZHAO ET AL.
Q 5 log2~M/K! 1 1, [24]

hereM is number of pixels within the FOV, andK is the
umber of separate subsections within the FOV, which
nly assume a value of 2i , where i is zero or a positiv

integer. For a complete wavelet multiresolution decomp

tion, K 5 1 andQ 5 log2M 1 1. For example, if there a
M 5 128 pixels in the FOV, a complete wavelet encod
decomposes the FOV into eight separate levels of re
tion. In the limiting case where the number of subsectio
equal to the number of pixels (M 5 K), there is only on
evel of resolution. For this case,W##(M,M) is the identity matrix
that represents direct or line scan encoding. With s
representation, multisection wavelet and direct encodin
integrated as one class of encoding scheme, which will
the SNR analysis discussed below.

Wavelet encoding basis normalization.In both Eq. [22
and Eq. [23], the encoding bases are not normalized.
encoding functions represented by such matrices wou
used for proton imaging to maximize SNR. As was analy
previously, however, they are not appropriate for hype
larized noble gas imaging because they do not maxi
SNR in hyperpolarized noble gas MRI. To normalize
wavelet encoding functions, the amplitude of each enco
function must be scaled by a factor that depends on
number of pixels excited by the function, so that

W## ~8,1!
norm 5 3

1/Î8 1/Î8 1/Î8 1/Î
1/Î8 1/Î8 1/Î8 1/Î
1/ 2 1/ 2 21/ 2 21
0 0 0 0

1/Î2 21/Î2 0 0
0 0 1/Î2 21/
0 0 0 0
0 0 0 0

and

W## ~8,2!
norm 5 3

1/ 2 1/ 2 1/ 2
0 0 0

1/ 2 1/ 2 21/ 2 2
0 0 0

1/Î2 21/Î2 0
0 0 0
0 0 1/Î2 2
0 0 0

subsection 0
n

i-

g
lu-
is

h
re
se

he
be
d
-
e

e
g
e

W## zW## T 5 I##, [25]

whereW## is the wavelet encoding matrix andI## is the identity
matrix.

For example, the normalized matrices for Eqs. [22] and
are, respectively,

Design of wavelet RF excitation pulses.In the standar
variable-flip-angle technique described in (10), the flip angle is
aried so that the amount of transverse magnetization exc
he same for different encoding steps. This techniques ca
irectly used for Fourier or Hadamard encoding because all
ithin the FOV are equally excited on each encoding step.
Calculating the appropriate flip angle for wavelet enco

sing the variable-flip-angle technique is complicated becau
ignal amplitude is no longer constant for each excitation,
olume elements experience variable delay between excita
he problem is illustrated by Fig. 4, which shows the H
ncoding functions arranged vertically according to the tem
rder of excitations. First, the amplitude of the encoding func

ncreases while fewer and fewer pixels are excited in each
ation. In addition, at pixel locationx0, spins are excited at time
T, 2T, and 4T. Although spins at locationsx1 are excited at th
same times asx0, the temporal pattern of excitation varies at o
locations. When consideringT1 decay, to create the spin pro
shown in Fig. 4, the flip angles of different pixels in each sec
have to be calculated separately.

In wavelet encoding, each pixel is excitedQ times, which is th

1/Î8 1/Î8 1/Î8 1/Î8
21/Î8 21/Î8 21/Î8 21/Î8

0 0 0 0
1/ 2 1/ 2 21/ 2 21/ 2
0 0 0 0
0 0 0 0

1/Î2 21/Î2 0 0
0 0 1/Î2 21/Î2

4 [26]

2 0 0 0 0
1/ 2 1/ 2 1/ 2 1/ 2

2 0 0 0 0
1/ 2 1/ 2 21/ 2 21/ 2
0 0 0 0

1/Î2 21/Î2 0 0
2 0 0 0 0

0 0 1/Î2 21/Î2

4 [27]

subsection 1
8
8
/ 2

Î2

1/
0
1/
0
0
0

1/Î
0
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same as the total number of resolution levels defined in Eq.
To fulfill the normalization requirement, the transverse mag
zation after theqth excitation at each pixel location should be

Sq 5 H 1/ÎN/K q 5 1
1/ÎN/~K z 2q22! q 5 2, 3, . . . ,Q . [28]

We also definet qm as the time between theqth and (q 1 1)th

excitation at the pixel locationxm,

tqm 5 H ~2q22 1 ~m mod N/K!/ 2Q2q!
3 K z TR 2 # q # Q 2 1

K z TR q 5 1
,

[29]

where 0 # m # M 2 1, TR is the repetition time of th
sequence, and “a mod b” represents “a modulob.”

To directly calculate the flip angle of the spins in each p
let us first calculate the residual longitudinal signal ampli
Znm at pixel locationxm, immediately after theqth RF pulse,

Zqm 5 Î~Z~q21!me2tq21~ xm!/T1~ xm!! 2 2 Sq
2 1 # q # Q, [30]

wherexm 5 mDx (0 # m # M 2 1), Dx is the pixel width,M is
the total number of pixels along the FOV, andSq andtqm are as
efined in Eqs. [28] and [29]. To effectively utilize all of the hyp
olarized magnetization, no residual longitudinal signal should b
fter the last RF pulse, i.e.,ZQm 5 0. Thus, according to Eq. [30]

L##(8,1) 5 3
59 59 59
63 63 63
71 71 271 2

0 0 0
127 2127 0

0 0 127 2
0 0 0
0 0 0

and

L##(8,2) 5 3
60 60 60

0 0 0
71 71 271 2

0 0 0
127 2127 0

0 0 0
0 0 127 2
0 0 0

subsection 0
4].
ti-

l
e

eft

Zqm 5 H Î¥ j5q11
Q Sj

2e2@¥ i5q
j21 t i~ xm!#/T1~ xm! 1 # q # Q 2 1

0 q 5 Q
.

[31]

herefore, the flip angle of theqth RF excitation at pixe
locationxm for a normalized Haar wavelet encoding basis w
Q levels of resolution is

uqm 5 arctanS Sq

Zqm
D [32]

5Harctan~Sq/Î¥ j5q11
Q Sj

2e2@¥ i5q
j21 t i~ xm!#/T1~ xm!! 1# q # Q 2 1

p/ 2 q 5 Q
,

[33]

hereSq andt qm are as defined in Eqs. [28] and [29]. In
limiting case of direct encoding whereQ 5 1, because eac

ixel is excited only one time, everyu is set top/2.
When theT1 relaxation time is ignored, Eq. [33] can

simplified to

uqm 5 Harctan~Sq/Î¥ j5q11
Q Sj

2! 1 # q # Q 2 1
p/ 2 q 5 Q

. [34]

For example, whenT1 is ignored, the scaling matricesL## for
the normalized complete and two-section wavelet enco
matrices described by Eqs. [26] and [27] are, respectivel

9 59 59 59 59
3 263 263 263 263

1 0 0 0 0
0 71 71 271 271
0 0 0 0 0
7 0 0 0 0
0 127 2127 0 0
0 0 0 127 2127

4 [35]

0 0 0 0 0
0 60 60 60 60
1 0 0 0 0
0 71 71 271 271
0 0 0 0 0
0 127 2127 0 0
7 0 0 0 0
0 0 0 127 2127

4 . [36]

subsection 1
5
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12
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7

12
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3. METHODS

3.1. Imaging System and Sequences

We implemented normalized Fourier, Hadamard, wav
and direct encoding methods and conducted a series of e
iments to compare the SNRs of these methods. All ima
was performed on a 1.5-T Signa imaging system (Ge
Electric Medical Systems, Milwaukee, WI) with standard g
dients. A doped water phantom imaged with a standard qu
ture head coil was used for proton experiments for SNR c
parisons. Images of a glass cell (7.5 cm long and 2 c
diameter) containing hyperpolarized129Xe were obtained a
17.7 MHz with a solenoid coil. Optical pumping of129Xe gas
was as described in (10). Computation of RF waveforms a
mage reconstruction was implemented with Matlab (

athworks, Inc., Natick, MA) on a separate SUN Sparc w
tation (Sun Microsystems, Mountain View, CA).
A standard gradient echo sequence was used for norm

ourier imaging. The variable-flip-angle technique descr
n (10) was applied to scale the RF pulses to excite norma
ncoding profiles. In the Hadamard, wavelet, and direct en

ng techniques, different spatial-selective RF pulses were
o excite the non-Fourier encoding functions along they di-
mension. Thex dimension was frequency encoded as usua
lice selection was applied. Image resolution along they di-
ension was 2.4 mm and along thex dimension it was 1.2 mm

or all of the encoding techniques.
The normalized encoding bases described in Section
ere used for Fourier and Hadamard encoding. The no

zed Haar wavelet basisW##(M,K) (described in Section 2.3.
was implemented withM 5 128 andK 5 1, 2, 4, 8, 16

2, 64, and 128. WhenK 5 128, theencoding matrix i
ust the identity matrix and the encoding represents a d
ransform or line scan encoding. The point-spread func
( x) was a smoothed Haar box-shape function, the Fo

ransform of a cosine windowed three-lobe sinc funct

FIG. 4. Illustration of various encoding amplitudes and repetition time
spins in different volume elements using wavelet encoding matrix.
t,
er-
g
al
-
ra-
-

in

e
-

ed
d
d
d-
ed

o

.3
al-

ct
n
er
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F pulses were generated with Matlab, converted to S
ormat, and transferred to the scanner.

For all imaging sequences, a TR of 50 ms and a TE of 2
ere used. The dwell time of the RF encoding pulses wa

ms, with 512 points defining each pulse shape, giving a
pulse duration of 15 ms. The image resolution was 128 (ph
by 256 (frequency) for all images.

In order to compare the hyperpolarization levels of n
gases for each image, a navigator excitation with a 1° flip a
was inserted at the beginning of the imaging sequences.
a 1° pulse, only 0.015% of the signal is depleted by
navigator echo; thus, there was no noticeable SNR decrea
the images.

3.2. Image Acquisition and Data Processing

Proton images were acquired with the constant flip a
(CFA) technique for Fourier, Hadamard, wavelet, and d
encoding. A small flip angle of 7° was used for all C
imaging in order to keep the peak RF amplitude within acc
able limits of the MR scanner for all Hadamard and wav
excitations while still permitting SNR comparisons across
methods. Wavelet encoded images with the CFA techn
were acquired at all possible levels of multiresolution dec
position, including the limiting case of direct encoding. T
relative SNRs of the proton images were then compare
verification of the theoretical predictions (2).

Hyperpolarized129Xe images were acquired with the va-
able-flip-angle technique for normalized Fourier, Hadam
wavelet, and direct encoding. Wavelet encoded images
the variable-flip-angle technique were acquired at all leve
multiresolution decomposition, including the limiting case
direct encoding. Images were reconstructed with the inv
normalized encoding bases.

Image SNR was defined as the ratio of mean of the s
magnitude over the standard deviation of the noise. The
signal value was measured in regions where there was a
signal, while the noise value was measured in regions o
signal. After being scaled by the amplitude of the navig
signal, the SNRs obtained using all encoding methods
normalized with respect to the SNRs obtained using Fo
encoding and compared with theoretical predictions.

For comparison, we also developed a variable-flip-a
approach, in which the standard (nonnormalized) multise
wavelet encoding bases could be achieved for imaging h
polarized129Xe. Image SNRs were both calculated theoretic
and measured experimentally. The SNRs were normalized
respect to those using Fourier encoding for comparison.

4. RESULTS

4.1. Proton Imaging with Constant Flip Angle

The relative SNRs of proton images (images are not sh
were compared with the theoretical results (Fig. 5a).

f



bo
ob

oth
si
e

din
tic
ati
tc
da
ire
uc
Th
ele
ic

mum
s of
cod-
, of
age
n is
FA
de-

from
ause
cita-
note

the
s is

nd
n

323SNR ANALYSIS
symbol “o” represents experimental result, while the sym
“1” represents theoretical predication. The image SNR
tained using Fourier encoding is assumed to be 1, and
encoding methods are normalized to the SNR obtained u
Fourier encoding. The SNR obtained using Hadamard
coding is the same as that obtained using Fourier enco
Since a very small flip angle of 7° was used, the theore
result was estimated with the assumption that magnetiz
was fully recovered between excitation. A close ma
between the theoretical predictions and experimental
can be seen. As shown in Fig. 5a, the wavelet and d
encoding methods applied for proton imaging produce m
lower SNR than does Fourier or Hadamard encoding.
larger the number of subsections in multisection wav
encoding, the smaller the SNR. Direct encoding (wh

FIG. 5. Comparison of image SNRs of (a) proton, (b)129Xe with norm
ormalized direct, Hadamard, and Fourier encoding. In (a), the relative
l
-
er

ng
n-
g.

al
on
h
ta
ct
h
e
t

h

represents the case of wavelet encoding with the maxi
number of subsections) gives the worst SNR. The SNR
the complete wavelet encoded image and the direct en
ing image are only about 15.3 and 8.8%, respectively
that of the Fourier or Hadamard encoded image when im
resolution along the wavelet or phase encoding directio
128. Note that the experimental result obtained for C
proton wavelet encoding does not show the monotonic
crease in SNR with subsection number that is expected
the theoretical calculations (see Fig. 5a), probably bec
the longitudinal recovery of protons spins between ex
tions was not considered in the SNR estimations. We
that there is a consistent deviation of 5–10% between
theoretical and experimental results in Fig. 5a. Thi
probably due to the error in flip angle estimation.

ed encoding bases, and (c)129Xe with standard nonnormalized wavelet a
R of Fourier and Hadamard encoding is 1.
aliz
SN
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4.2. Hyperpolarized129Xe Imaging with Variable Flip Angle

A comparison of theoretical and experimental SNRs
normalized Fourier, multisection wavelet, and direct enco
for hyperpolarized129Xe imaging is shown in Fig. 5b. The “o
symbol represents experimental results and the “1” symbol
represents theoretical SNRs. The normalized multise
wavelet and direct encoding methods, applied for hyperp
ized 129Xe imaging, produce SNRs that are the same as tho
the normalized Fourier and Hadamard encoding, in stark
trast to the proton imaging case (Fig. 5a). The theoretical
predictions are corroborated by the experimental results
comparison, an example of the relative image SNRs, obt
with standard wavelet encoding (nonnormalized) base
shown in Fig. 5c. As expected, image SNRs obtained u
nonnormalized bases were lower than the SNRs obtained
the normalized encoding bases.

5. DISCUSSION

In this paper, we developed the theory for analyzing
image SNR of hyperpolarized noble gases, and conclude
the image SNR for hyperpolarized noble gas imaging is
imized using any orthonormal encoding method.On the basi
of this finding, we derived algorithms to directly calculate
variable flip angles for RF encoding pulses so that norma
encoding bases could be achieved with the considerati
bothT1 relaxation and the depletion of hyperpolarized ma-
tization by the RF pulses.

We integrated multisection wavelet and direct encoding
one general scheme, with the same reconstruction matri
mat. This method facilitates the understanding of the S
relationship among the direct and the multisection wav
encoding techniques. Excellent matches between the the
cal and experimental SNRs, for both proton and129Xe imaging
have been demonstrated. These methods can be used t
mize imaging schemes with Fourier, Hadamard, wavele
rect, or any other orthonormal encoding basis so that high-
images can be obtained with the most efficient utilizatio
hyperpolarization.

In wavelet and direct encoding, the SNR varies slightly w
pixel location. Due to the longitudinal relaxation of no
gases, spins that are excited at a later time have a smaller
than those that are excited earlier. In the direct encoding
the last pixel is excited (M 2 1) p TR after the first spins a
excited (whereM is the number of pixels along the FOV
When the TR is much smaller thanT1, this effect is expecte
to be negligible.

When hyperpolarized noble gases are imaged, the hyp
larized magnetization is 105 times larger than the longitudin

agnetization at thermal Boltzmann equilibrium. Since
R signal does not depend on the recovery of the the
agnetization, long recycle delays are not needed. The ab
f the detectable129Xe or 3He signal at thermal equilibriu
h
g

n
r-
of
n-
R
or
ed
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ing

e
at
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magnetization levels also eliminates a complication for wa
encoding that exists in proton imaging: the unevenT1 weight-
ing across the FOV (12). In proton imaging, uneven weighti
arises from the variation of the longitudinal recovery due to
variable TRs at different pixel locations. This problem
increased in proton wavelet imaging when the TR is s
complicating the application of wavelet encoding for many
imaging techniques. By contrast, in hyperpolarized noble
imaging the situation actually improves with shorter TR. W
TR is much less thanT1, the uneven weighting effect is tota
eliminated.

In our experiments, no slice selection was applied.
achieve slice selection, a 180° pulse that refocuses spins
a direction orthogonal to the initial excitation can be inse
into the non-Fourier encoding sequence. For multiple-
imaging sequences, however, imperfect 180° RF pulse
destroy some of the stored longitudinal hyperpolarized m
netization (13), resulting in images with lower SNR. Altern
ively, a 90° spatial-selective RF pulse can be used to elim
ll of the hyperpolarized magnetization outside of the sla

nterest before the imaging sequence starts, and phase en
an then be applied within the slab to obtain multiple sli
ith this method, only a small amount of extra time is nee

t the beginning of the imaging session to deplete the ou
lab hyperpolarized magnetization.
Due to the nonlinear relationship between an RF p

nvelope and the spatial distribution of magnetization th
xcites, image distortion can be introduced when a si
ourier transform technique is used for RF pulse desig

arge flip angles. Since RF excitation is only used for s
election, this is not an important issue for Fourier encodin
on-Fourier encoding, however, the spatial distribution of
ited magnetization itself participates in the encoding, so
he nonlinearity may introduce image artifacts. When the
ble-flip-angle technique is applied to hyperpolarized noble

maging, in order to efficiently utilize all the hyperpolarizati
ip angles as large as 90° pulse have to be applied. Ther
t is expected that special RF pulse design techniques (14–20)
will be needed to achieve accurate spatial profiles and art
free images. In our variable-flip-angle experiments, 90° pu
were used only on the last excitation for wavelet, Hadam
and Fourier encoding and on all encoding steps for d
encoding. Using these encoding methods, even though th
pulses were designed by simple Fourier transformation
noticeable distortion was seen in the images. For the d
imaging technique, because all the pixels across the FO
excited with the same profile, slight profile distortions will
introduce noticeable artifacts. In other encoding methods,
pulse was used for only the high-resolution profiles. Owin
the small signal associated with these encoding steps,
unlikely that there will be any noticeable artifact.

In our SNR analysis, we assumed that spins stay within
pixel boundary during the excitation. The analysis will
affected by motion of the spins. One source of motio
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diffusion. For example, our 3-atm Xe cell phantom ha
diffusion constant ofD 5 0.02 cm2/s (21). During the 15-m
RF pulse application (tRF),

129Xe atoms will diffusedXdiff 5
2DtRF)

1/2 5 0.2 mm (9). Thus, when pixel size is sma
especially comparable to the diffusion length, the SNR ana
and the RF generation methods may not hold. When pixe
is large or when the duration of the RF pulse is short, how
the effect of diffusion can be ignored for the SNR analys

A gas circulation system (22) can provide a continuous flo
of hyperpolarized noble gases (23). With the replenishing o
hyperpolarized gases, MR signal levels can be expect
increase considerably. This improved MR signal can sig
cantly help in many hyperpolarized noble gas NMR spec
copy and MRI applications (24). Image SNR calculation wit
ontinuous flow is complicated because there is flow-i
ewly hyperpolarized gas and flow-out of depolarized gas
yperpolarization level of each pixel relies on the initial m
etization, the RF pulse flip angles applied, and the
elocity and direction. If the flow is fast enough, the hype
arized magnetization at each pixel in the FOV is fully rep
shed with newly polarized gas between excitations. In
ase, image SNR comparison is the same as that descri
cenario I. Further investigations will focus on the modelin
ow with the consideration of flow velocity, direction, a
heir relationship with the utilization of hyperpolarized m
etization during imaging.
In summary, imaging of a hyperpolarized129Xe cell using

ormalized Fourier, Hadamard, wavelet, and direct enco
as implemented and the relative SNRs were measure
ompared across the various encoding methods. With the
f Fourier encoding as a reference, the relative SNRs obt
sing wavelet and direct encoding were shown to incr
ramatically from 0.153 and 0.088, respectively, in pro

maging to 1.0 for hyperpolarized gas imaging where all
honormal encoding methods have identical SNR. Even fo
ase of TR# T1 (Scenario II), there is still a significant SN

difference for proton imaging between Fourier encoding
spatially localized encoding methods such as direct enco
The SNR equivalence of all orthonormal encoding metho
hyperpolarized noble gas imaging is of striking significa
because it opens the door for new applications of non-Fo
encoding methods. In particular, the spatial localization fea
of some non-Fourier encoding methods make them suitab
dynamically adaptive imaging.

APPENDIX

THEOREM 1. For a group of nonnegative real numbers1,
2, . . . , an, if a 1 1 a2 1 . . . 1 an 5 C, where C is a

constant larger or equal to zero and n is any integer num
which is larger or equal to2. Sn 5 1/a1 1 1/a2 1 . . . 1 1/an

will be minimized only if a1 5 a2 5 . . . 5 an 5 C/n.

Proof. We will use the induction method to prove t
theorem.
a

is
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1. Let’s first prove the theorem for the case ofn 5 2. When
n 5 2, a1 1 a2 5 C. Thus,

S2 5
1

a1
1

1

a2
5

1

a1
1

1

C 2 a1
5

C

a1~C 2 a1!
. [37]

ecause the coefficient ofa1
2 in the quadruple functiona1(C 2

a1) is 21, functiona1(C 2 a1) has a maximal value. SinceC
is not negative,S2 has a minimal value. When the derivative
S2 is 0, S2 is minimized. Based on Eq. [37],

dS2

da1
5 dS C

a1~C 2 a1!
D /da1 [38]

5
C~2a1 2 C!

a1
2~C 2 a1!

2 . [39]

To solvedS2/da1 5 0, we geta1 5 a2 5 C/ 2, whenS2 is
inimized.
2. Let’s then prove that if the theorem is true for the cas
5 N 2 1, it is true for the case ofn 5 N, whereN is an

integer and is larger than 2. Whenn 5 N anda1 1 a2 1 . . .

aN 5 C, we want to minimizeSN 5 1/a1 1 1/a2 1 . . . 1
1/aN. For ANY fixed aN, to minimizeSN 5 SN21 1 1/aN is
equivalent to minimizeSN21. Since the theorem is true f
n 5 N 2 1, for anyaN, SN21 will be minimized only ifa1 5
a2 5 . . . 5 aN21 5 (C 2 aN)/(N 2 1). Therefore,

SN 5
1

a1
1

1

a2
1 · · ·1

1

aN
5

~N 2 1! 2

~C 2 aN!
1

1

aN
. [40]

imilar to the proof in [1],SN has a minimum value. T
minimize SN, according to Eq. [40], we should set the de-
ative of SN to be 0,

dS ~N 2 1! 2

~C 2 aN!
1

1

aN
D /daN 5 0. [41]

The solution to Eq. [41] isaN 5 C/N. Therefore, whena1 5
a2 5 . . . 5 aN21 5 aN 5 C/N, SN is minimized.

3. According to [1] and [2] and based on the induc
theory, for anyn with a1 1 a2 1 . . . 1 an 5 C, only if

1 5 a2 5 . . . 5 an 5 C/n, the summationSN 5 1/a1 1
1/a2 1 . . . 1 1/aN is minimized and equalsn2/C.
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